Fabrication of TiO2 Nanoparticle Coating on Stainless Steel 316L and Its Assessment for Orthopaedic Applications

Author:

Jadon Manjit Singh,Kumar Sandeep

Abstract

The study aims to investigate the efficacy of titanium dioxide (TiO2) nanoparticle coating on stainless steel 316L (SS 316L) orthopaedic implants to enhance their biocompatibility, osseointegration, and durability. The TiO2 nanoparticles were synthesized via the hydrothermal method and extensively characterized for composition, crystallinity, and morphology using techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), corroborated by elemental mapping. SEM and XRD analyses revealed the synthesized nanoparticles have a spherical shape and an average size of approximately 23 nanometres. The synthesized TiO2 nanoparticles were uniformly coated on SS 316L substrates using the spin coating technique, as confirmed by SEM images. Cell viability of the synthesized TiO2 nanoparticles, as well as uncoated and TiO2 nanoparticle-coated SS 316L substrates, was evaluated using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay against the NIH-3T3 mouse embryonic fibroblast cell line. The results demonstrated that the TiO2 nanoparticle-coated SS 316L substrate showed a significant increase of 22.87% in cell viability as compared to the uncoated SS 316L substrate. A ball-on-disc tribometer was employed to assess wear and friction resistance at various speeds, viz., 150 rpm, 300 rpm, and 450 rpm, under 30N load conditions for five minutes. The results collectively indicate a substantial improvement in the performance of TiO2 nanoparticle-coated SS 316L substrates for orthopaedic applications.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3