Experimental and LBM analysis of medium-Reynolds number fluid flow around NACA0012 airfoil

Author:

Rak Andro,Grbčić Luka,Sikirica Ante,Kranjčević Lado

Abstract

Purpose The purpose of this paper is the examination of fluid flow around NACA0012 airfoil, with the aim of the numerical validation between the experimental results in the wind tunnel and the Lattice Boltzmann method (LBM) analysis, for the medium Reynolds number (Re = 191,000). The LBM–large Eddy simulation (LES) method described in this paper opens up opportunities for faster computational fluid dynamics (CFD) analysis, because of the LBM scalability on high performance computing architectures, more specifically general purpose graphics processing units (GPGPUs), pertaining at the same time the high resolution LES approach. Design/methodology/approach Process starts with data collection in open-circuit wind tunnel experiment. Furthermore, the pressure coefficient, as a comparative variable, has been used with varying angle of attack (2°, 4°, 6° and 8°) for both experiment and LBM analysis. To numerically reproduce the experimental results, the LBM coupled with the LES turbulence model, the generalized wall function (GWF) and the cumulant collision operator with D3Q27 velocity set has been used. Also, a mesh independence study has been provided to ensure result congruence. Findings The proposed LBM methodology is capable of highly accurate predictions when compared with experimental data. Besides, the special significance of this work is the possibility of experimental and CFD comparison for the same domain dimensions. Originality/value Considering the quality of results, root-mean-square error (RMSE) shows good correlations both for airfoil’s upper and lower surface. More precisely, maximal RMSE for the upper surface is 0.105, whereas 0.089 for the lower surface, regarding all angles of attack.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference65 articles.

1. Lattice-Boltzmann method for complex flows;Annual Review of Fluid Mechanics,2010

2. Assessment of several modeling strategies on the prediction of lift-drag coefficients of a NACA0012 airfoil at a moderate Reynold number;Alexandria Engineering Journal,2022

3. Wall-modeled Lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers;Physics of Fluids,2021

4. The Lattice Boltzmann equation: theory and applications;Physics Reports,1992

5. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems;Physical Review,1954

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3