Optimal path strategy for the web computing under deep reinforcement learning

Author:

Shengdong Mu,Fengyu Wang,Zhengxian Xiong,Xiao Zhuang,Lunfeng Zhang

Abstract

Purpose With the advent of the web computing era, the transmission mode of the Internet of Everything has caused an explosion in data volume, which has brought severe challenges to traditional routing protocols. The limitations of the existing routing protocols under the condition of rapid data growth are elaborated, and the routing problem is remodeled as a Markov decision process. this paper aims to solve the problem of high blocking probability due to the increase in data volume by combining deep reinforcement learning. Finally, the correctness of the proposed algorithm in this paper is verified by simulation. Design/methodology/approach The limitations of the existing routing protocols under the condition of rapid data growth are elaborated and the routing problem is remodeled as a Markov decision process. Based on this, a deep reinforcement learning method is used to select the next-hop router for each data transmission task, thereby minimizing the length of the data transmission path while avoiding data congestion. Findings Simulation results show that the proposed method can significantly reduce the probability of data congestion and increase network throughput. Originality/value This paper proposes an intelligent routing algorithm for the network congestion caused by the explosive growth of data volume in the future of the big data era. With the help of deep reinforcement learning, it is possible to dynamically select the transmission jump router according to the current network state, thereby reducing the probability of congestion and improving network throughput.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference28 articles.

1. Deep reinforcement learning paradigm for dense wireless networks in smart cities,2020

2. Traffic signs detection for real-world application of an advanced driving assisting system using deep learning;Neural Processing Letters,2019

3. Sheldon, etc using cross-classified multivariate mixed response models with application to life history traits in great tits (parus major);Statistical Modelling: An International Journal,2007

4. Guest editorial on advances in tools and techniques for enabling cyberphysical social systems – part I;IEEE Transactions on Computational Social Systems,2015

5. Nuclear energy 5. 0: new formation and system architecture of nuclear power industry in the new IT era;Acta Automatica Sinica,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3