Application study of ant colony algorithm for network data transmission path scheduling optimization

Author:

Xiao Peng1

Affiliation:

1. School of Information Engineering, Jiangxi Vocational College of Industry & Engineering , Pingxiang 337000 , China

Abstract

Abstract With the rapid development of the information age, the traditional data center network management can no longer meet the rapid expansion of network data traffic needs. Therefore, the research uses the biological ant colony foraging behavior to find the optimal path of network traffic scheduling, and introduces pheromone and heuristic functions to improve the convergence and stability of the algorithm. In order to find the light load path more accurately, the strategy redefines the heuristic function according to the number of large streams on the link and the real-time load. At the same time, in order to reduce the delay, the strategy defines the optimal path determination rule according to the path delay and real-time load. The experiments show that under the link load balancing strategy based on ant colony algorithm, the link utilization ratio is 4.6% higher than that of ECMP, while the traffic delay is reduced, and the delay deviation fluctuates within ±2 ms. The proposed network data transmission scheduling strategy can better solve the problems in traffic scheduling, and effectively improve network throughput and traffic transmission quality.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3