Recursive parameter estimation for load sensing proportional valve based on polynomial chaos expansion

Author:

Ma Zeyu,Wu Jinglai,Zhang Yunqing,Jiang Ming

Abstract

Purpose – The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional valve (LSPV), which is commonly used to improve the efficiency of brake system in heavy truck. Design/methodology/approach – For this investigation, the mathematic model of LSPV is constructed in the form of state space equation. Then the estimation process is implemented relying on the experimental measurements. With the coefficients of the PC expansion obtained by the numerical implementation, the output observation function can be transformed into a linear and time-invariant form. The uncertain parameter recursively update functions based on Newton method can therefore be derived fit for computer calculation. To improve the estimation accuracy and stability, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process. Findings – The accuracy and effectiveness of the proposed parameter estimation method are confirmed by model validation compared with other estimation methods. Meanwhile, the influence of measurement noise on the robustness of the estimation methods is taken into consideration, and it is shown that the estimation approach developed in this paper could achieve impressive stability without compromising the convergence speed and accuracy too much. Originality/value – The model of LSPV is originally developed in this paper, and then the authors propose a novel effective strategy for recursively estimating uncertain parameters of complicate pneumatic system based on the PC theory.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3