Polynomial chaos-based parameter estimation methods applied to a vehicle system

Author:

Blanchard E D1,Sandu A2,Sandu C1

Affiliation:

1. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

2. Computer Science Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

Abstract

Parameter estimation for large systems is a difficult problem, and the solution approaches are computationally expensive. The polynomial chaos approach has been shown to be more efficient than Monte Carlo for quantifying the effects of uncertainties on the system response. This article compares two new computational approaches for parameter estimation based on the polynomial chaos theory for parameter estimation: a Bayesian approach, and an approach using an extended Kalman filter (EKF) to obtain the polynomial chaos representation of the uncertain states and the uncertain parameters. The two methods are applied to a non-linear four-degree-of-freedom roll plane model of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar. When using appropriate excitations, the results obtained with both approaches are close to the actual values of the parameters, and both approaches can work with noisy measurements. The EKF approach has an advantage over the Bayesian approach: the estimation comes in the form of a posteriori probability densities of the estimated parameters. However, it can yield poor estimations when dealing with non-identifiable systems, and it is recommended to repeat the estimation with different sampling rates in order to verify the coherence of the results with the EKF approach. The Bayesian approach is more robust, can recognize non-identifiability, and use regularization techniques if necessary.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3