An h-version adaptive FEM for eigenproblems in system of second order ODEs: vector Sturm-Liouville problems and free vibration of curved beams

Author:

Wang Yongliang

Abstract

Purpose This study aims to overcome the involved challenging issues and provide high-precision eigensolutions. General eigenproblems in the system of ordinary differential equations (ODEs) serve as mathematical models for vector Sturm-Liouville (SL) and free vibration problems. High-precision eigenvalue and eigenfunction solutions are crucial bases for the reliable dynamic analysis of structures. However, solutions that meet the error tolerances specified are difficult to obtain for issues such as coefficients of variable matrices, coincident and adjacent approximate eigenvalues, continuous orders of eigenpairs and varying boundary conditions. Design/methodology/approach This study presents an h-version adaptive finite element method based on the superconvergent patch recovery displacement method for eigenproblems in system of second-order ODEs. The high-order shape function interpolation technique is further introduced to acquire superconvergent solution of eigenfunction, and superconvergent solution of eigenvalue is obtained by computing the Rayleigh quotient. Superconvergent solution of eigenfunction is used to estimate the error of finite element solution in the energy norm. The mesh is then, subdivided to generate an improved mesh, based on the error. Findings Representative eigenproblems examples, containing typical vector SL and free vibration of beams problems involved the aforementioned challenging issues, are selected to evaluate the accuracy and reliability of the proposed method. Non-uniform refined meshes are established to suit eigenfunctions change, and numerical solutions satisfy the pre-specified error tolerance. Originality/value The proposed combination of methodologies described in the paper, leads to a powerful h-version mesh refinement algorithm for eigenproblems in system of second-order ODEs, that can be extended to other classes of applications in damage detection of multiple cracks in structures based on the high-precision eigensolutions.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3