Numerical analysis of unstable propagation of three-dimensional parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal diffusion

Author:

Wang YongliangORCID

Abstract

PurposeThe purpose of this study is to investigate the unstable propagation of parallel hydraulic fractures induced by interferences of adjacent perforation clusters and thermal diffusion. Fracture propagation in the process of multistage fracturing of a rock mass is deflected owing to various factors. Hydrofracturing of rock masses in deep tight reservoirs involves thermal diffusion, fluid flow and deformation of rock between the rock matrix and fluid in pores and fractures.Design/methodology/approachTo study the unstable propagation behaviours of three-dimensional (3D) parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion, a 3D engineering-scale numerical model is established under different fracturing scenarios (sequential, simultaneous and alternate fracturing) and different perforation cluster spacings while considering the thermal-hydro-mechanical coupling effect. Stress disturbance region caused by fracture propagation in a deep tight rock mass is superimposed and overlaid with multiple fractures, resulting in a stress shadow effect and fracture deflection.FindingsThe results show that the size of the stress shadow areas and the interaction between fractures increase with decreasing multiple perforation cluster spacing in horizontal wells. Alternate fracturing can produce more fracture areas and improve the fracturing effect compared with those of sequential and simultaneous fracturing. The larger the temperature gradient between the fracturing fluid and rock matrix, the stronger the thermal diffusion effect, and the effect of thermal diffusion on the fracture propagation is significant.Originality/valueThis study focuses on the behaviours of the unstable dynamic propagation of 3D parallel hydraulic fractures induced by the interferences of adjacent perforation clusters and thermal diffusion. Further, the temperature field affects the fracture deflection requires could be investigated from the mechanisms; this paper is to study the unstable propagation of fractures in single horizontal well, which can provide a basis for fracture propagation and stress field disturbance in multiple horizontal wells.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference39 articles.

1. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing;International Journal for Numerical Methods in Engineering,2011

2. Why fracking works;Journal of Applied Mechanics,2014

3. Carter, E. (1957), “Optimum fluid characteristics for fracture extension”, in Howard, G. and Fast, C. (Eds), Drilling and Production Practices, American PetroleumInstitute, Tulsa, pp. 57-261.

4. Numerical study on hydraulic fracturing in tight gas formation in consideration of thermal effects and THM coupled processes;Journal of Petroleum Science and Engineering,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3