Hardware-efficient approximate multiplier architectures for media processing applications

Author:

Uppugunduru Anil Kumar,Ahmed Syed Ershad

Abstract

Purpose Multipliers that form the basic building blocks in most of the error-resilient media processing applications are computationally intensive and power-hungry modules. Therefore, improving the multiplier’s performance in terms of area, critical path delay and power has become an important research area. This paper aims to propose two improved multiplier designs based on a new approximate compressor circuit to reduce the hardware complexity at the partial product reduction stage. The proposed approximate 4:2 compressor design significantly reduces the overall hardware cost of the multiplier. The error introduced by the approximate compressor is reduced using a new technique of assigning inputs to the compressors in the partial product reduction structure. Design/methodology/approach The multiplier designs implemented using the proposed approximate 4:2 compressor are targeted for error-resilient applications. For fair comparisons, various multiplier designs, including the proposed one, are implemented in MATLAB. The quality analysis is carried out using standard images, and metrics such as structural similarity index are computed to quantify the result of proposed designs with the existing architectures. Next, Verilog gate-level designs are synthesized to compute area, delay and power to prove the efficacy of the proposed designs. Findings Exhaustive error and hardware analysis have been carried out for the existing and proposed multiplier architectures. Error analysis carried out using MATLAB proves that the proposed designs achieve better quality metrics than existing designs. Hardware results show that area, the power consumed and critical path delay are reduced up to 39.8%, 51.7% and 15.9%, respectively, compared to the existing designs. Toward the end, the proposed designs impact is quantified and compared with existing designs on real-time image sharpening and image multiplication applications. Originality/value The area, delay and power metrics of the multiplier can be improved using an approximate compressor in an error-resilient application. Accordingly, in this work, a new compressor is proposed that reduces the hardware complexity in the multiplier architecture. However, the proposed approximate compressor, while reducing the computational complexity, tends to introduce error in the multiplier. The error introduced by the approximate compressor is reduced using a new technique of assigning inputs to the compressors in the partial product reduction structure. With the help of the approximate compressor and a technique of input realignment, hardware efficient and highly accurate multiplier designs are achieved.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Power Approximate Divider and Square Root Circuits for Error Resilient Applications;2023 11th International Conference on Intelligent Systems and Embedded Design (ISED);2023-12-15

2. Design and evaluation of ultra‐fast 8‐bit approximate multipliers using novel multicolumn inexact compressors;International Journal of Circuit Theory and Applications;2023-04-03

3. Lower part OR based Approximate Multiplier for Error Resilient Applications;2021 IEEE International Symposium on Smart Electronic Systems (iSES);2021-12

4. Approximate Multiplier Architectures for Error Resilient Applications;2021 IEEE International Symposium on Smart Electronic Systems (iSES);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3