Patch antenna design optimization using opposition based grey wolf optimizer and map-reduce framework

Author:

Guttula Ramakrishna,Nandanavanam Venkateswara Rao

Abstract

Purpose Microstrip patch antenna is generally used for several communication purposes particularly in the military and civilian applications. Even though several techniques have been made numerous achievements in several fields, some systems require additional improvements to meet few challenges. Yet, they require application-specific improvement for optimally designing microstrip patch antenna. The paper aims to discuss these issues. Design/methodology/approach This paper intends to adopt an advanced meta-heuristic search algorithm called as grey wolf optimization (GWO), which is said to be inspired by the hunting behaviour of grey wolves, for the design of patch antenna parameters. The searching for the optimal design of the antenna is paced up using the opposition-based solution search. Moreover, the proposed model derives a nonlinear objective model to aid the design of the solution space of antenna parameters. After executing the simulation model, this paper compares the performance of the proposed GWO-based microstrip patch antenna with several conventional models. Findings The gain of the proposed model is 27.05 per cent better than WOAD, 2.07 per cent better than AAD, 15.80 per cent better than GAD, 17.49 per cent better than PSAD and 3.77 per cent better than GWAD model. Thus, it has proved that the proposed antenna model has attained high gain, leads to cause superior performance. Originality/value This paper presents a technique for designing the microstrip patch antenna, using the proposed GWO algorithm. This is the first work utilizes GWO-based optimization for microstrip patch antenna.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference31 articles.

1. High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement;Photonics and Nanostructures – Fundamentals and Applications,2016

2. Analysis of W-slot loaded patch antenna for dualband operation;International Journal of Electronics and Communications (AEÜ),2012

3. Synthesis of a Galileo and Wi-Max three-band fractal-eroded patch antenna;IEEE Antennas and Wireless Propagation Letters,2007

4. Patch antenna coupled 0.2 THz TUNNETT oscillators;Solid-State Electronics,2010

5. Cost-efficient design optimization of compact patch antennas with improved bandwidth;IEEE Antennas and Wireless Propagation Letters,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3