Flexural performance of reinforced concrete beam made with waste foundry sand as fine aggregate

Author:

Mahadevappa ManjunathaORCID,Krupa Rakshith Shri GuruORCID,Ahmed Shaik Kabeer,Shetty Rakshith Kumar

Abstract

PurposeThe structural behavior of reinforced concrete (RC) beams made with waste foundry sand (WFS) was examined in this study by using investigational data. Five RC beams were tested in this present work, four beams with varying WFS content and one beam with natural aggregates. The factors considered for studying the flexural performance of RC beams were WFS content (10%, 20%, 30% and 40%), 15% Ground Granulated Blast Furnace Slag (GGBS) is used as supplementary cementitious (SCM) content for all beams and tension reinforcement ratio (0.95%). The crack pattern of the RC beams with WFS (RCB1, RCB2, RCB3 and RCB4) was similar to that of referral beam–RCB0. The RC beams made with WFS (RCB1, RCB2, RCB3 and RCB4) show lesser number of cracks than referral beam–RCB0. It is observed that RCB1 beam shows higher ultimate moment carrying capacity than other RC beams. A detailed assessment of the investigational results and calculations based on IS: 456-2000 code for flexural strength exhibited that the present provisions conservatively predicts the flexural strength and crack width of RC beams with WFS and 15% GGBS. It is suggested that 10% WFS can be used to make RC beam.Design/methodology/approachIn this present work, four RC beams made WFS and one RC beam made with natural aggregates. 15% GGBS is used as SCM for all RC beams. After casting of RC beams, the specimens were cured with wetted gunny bags for 28 days. After curing, RC beams like RCB0, RCB1, RCB2, RCB3 and RCB4 were tested under a four-point loading simply supported condition. An assessment of investigational results and calculations as per IS: 456-2000 code provisions has been made for flexural strength and crack width of RC beams with WFS and 15% GGBS. The crack pattern is also studied.FindingsFrom this experimental results, it is found that 10% WFS can be used for making RC beam. The RCB1 with 10% WFS shows better flexural performance than other RC beams. RC beams made with WFS show lesser number of cracks than referral beam–RCB0. IS: 456-2000 code provisions can be safely used to predict the moment capacity and crack width of RC beams with WFS and 15% GGBS.Originality/valueBy utilization of WFS, the dumping of waste and environmental pollution can be reduced. By experimental investigation, it is suggested that 10% WFS can be used to make RC structural members for low cost housing projects.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference24 articles.

1. An investigation of waste foundry sand in asphalt concrete mixtures;Waste Management and Research,2006

2. Foundry wastes reuse and recycling in concrete production;American Journal of Environmental Science,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3