Using learning analytics to alleviate course and student support administrative load for large classes: a case study

Author:

Honson VanessaORCID,Vu Thuy,Tran Tich Phuoc,Tejada Estay Walter

Abstract

PurposeLarge class sizes are becoming the norm in higher education against concerns of dropping learning qualities. To maintain the standard of learning and add value, one of the common strategies is for the course convenor to proactively monitor student engagement with learning activities against their assessment outcomes and intervene timely. Learning analytics has been increasingly adopted to provide these insights into student engagement and their performance. This case study explores how learning analytics can be used to meet the convenor’s requirements and help reduce administrative workload in a large health science class at the University of New South Wales.Design/methodology/approachThis case-based study adopts an “action learning research approach” in assessing ways of using learning analytics for reducing workload in the educator’s own context and critically reflecting on experiences for improvements. This approach emphasises reflexive methodology, where the educator constantly assesses the context, implements an intervention and reflects on the process for in-time adjustments, improvements and future development.FindingsThe results highlighted ease for the teacher towards the early “flagging” of students who may not be active within the learning management system or who have performed poorly on assessment tasks. Coupled with the ability to send emails to the “flagged” students, this has led to a more personal approach while reducing the number of steps normally required. An unanticipated outcome was the potential for additional time saving through improving the scaffolding mechanisms if the learning analytics were customisable for individual courses.Originality/valueThe results provide further benefits for learning analytics to assist the educator in a growing blended learning environment. They also reveal the potential for learning analytics to be an effective adjunct towards promoting personal learning design.

Publisher

Emerald

Reference38 articles.

1. Future of education post covid-19 pandemic: reviewing changes in learning environments and latest trends;Solid State Technology,2020

2. Be (com) ing a reflexive researcher: a developmental approach to research methodology;Open Review of Educational Research,2017

3. Teaching large-enrollment online language courses: faculty perspectives and an emerging curricular model;System,2022

4. Fostering student engagement with motivating teaching: an observation study of teacher and student behaviours;Research Papers in Education,2021

5. Delivering quality along with quantity: the challenge of teaching a large and heterogeneous engineering class;International Journal of Mechanical Engineering Education,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3