Dynamic scheduling model for the construction industry

Author:

Fahmy Amer,Hassan Tarek,Bassioni Hesham,McCaffer Ronald

Abstract

Purpose Basic project control through traditional methods is not sufficient to manage the majority of real-time events in most construction projects. The purpose of this paper is to propose a Dynamic Scheduling (DS) model that utilizes multi-objective optimization of cost, time, resources and cash flow, throughout project construction. Design/methodology/approach Upon reviewing the topic of DS, a worldwide internet survey with 364 respondents was conducted to define end-user requirements. The model was formulated and solution algorithms discussed. Verification was reported using predefined problem sets and a real-life case. Validation was performed via feedback from industry experts. Findings The need for multi-objective dynamic software optimization of construction schedules and the ability to choose among a set of optimal alternatives were highlighted. Model verification through well-known test cases and a real-life project case study showed that the model successfully achieved the required dynamic functionality whether under the small solved example or under the complex case study. The model was validated for practicality, optimization of various DS schedule quality gates, ease of use and software integration with contemporary project management practices. Practical implications Optimized real-time scheduling can provide better resources management including labor utilization and cost efficiency. Furthermore, DS contributes to optimum materials procurement, thus minimizing waste. Social implications Optimized real-time scheduling can provide better resources management including labor utilization and cost efficiency. Furthermore, DS contributes to optimum materials procurement, thus minimizing waste. Originality/value The paper illustrates the importance of DS in construction, identifies the user needs and overviews the development, verification and validation of a model that supports the generation of high-quality schedules beneficial to large-scale projects.

Publisher

Emerald

Subject

Management Science and Operations Research,Civil and Structural Engineering

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3