Optimal energy management of microgrid using advanced multi-objective particle swarm optimization

Author:

Anh Ho Pham Huy,Kien Cao Van

Abstract

Purpose The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power isolated microgrid. The microgrid investigated combines renewable and conventional power generation. Design/methodology/approach Five bio-inspired optimization methods include an advanced proposed multi-objective particle swarm optimization (MOPSO) approach which is comparatively applied for OEM of the implemented microgrid with other bio-inspired optimization approaches via their comparative simulation results. Findings Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization methods. Moreover, the proposed MOPSO is successfully applied to perform 24-h OEM microgrid. The simulation results also display the merits of the real time optimization along with the arbitrary of users’ selection as to satisfy their power requirement. Originality/value This paper focuses on the OEM of a designed microgrid using a newly proposed modified MOPSO algorithm. Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization approaches.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference25 articles.

1. Multi-objective planning of distributed energy resources: a review of the state-of-the-art;Renewable and Sustainable Energy Reviews,2010

2. MOPS0 a proposal for multiple objective particle swam optimization,2002

3. Colson, C.M. (2012), “Towards real-time power management of microgrids for power system integration: a decentralized multi-agent based approach”, Ph.D. Dissertation, Montana State University, [Online], available: http://search.proquest.com/docview/1267824465

4. Evaluating the benefits of a hybrid solid oxide fuel cell combined head and power plant for energy sustainability and emissions avoidance;IEEE Trans. Energy Convers,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3