The impact of knowledge characteristics on process performance: experimenting with the conversion perspective on knowledge transfer velocity

Author:

Grum MarcusORCID,Gronau Norbert

Abstract

PurposeWith shorter product cycles and a growing number of knowledge-intensive business processes, time consumption is a highly relevant target factor in measuring the performance of contemporary business processes. This research aims to extend prior research on the effects of knowledge transfer velocity at the individual level by considering the effect of complexity, stickiness, competencies, and further demographic factors on knowledge-intensive business processes at the conversion-specific levels.Design/methodology/approachWe empirically assess the impact of situation-dependent knowledge transfer velocities on time consumption in teams and individuals. Further, we issue the demographic effect on this relationship. We study a sample of 178 experiments of project teams and individuals applying ordinary least squares (OLS) for regression analysis-based modeling.FindingsThe authors find that time consumed at knowledge transfers is negatively associated with the complexity of tasks. Moreover, competence among team members has a complementary effect on this relationship and stickiness retards knowledge transfers. Thus, while demographic factors urgently need to be considered for effective and speedy knowledge transfers, these influencing factors should be addressed on a conversion-specific basis so that some tasks are realized in teams best while others are not. Guidelines and interventions are derived to identify best task realization variants, so that process performance is improved by a new kind of process improvement method.Research limitations/implicationsThis study establishes empirically the importance of conversion-specific influence factors and demographic factors as drivers of high knowledge transfer velocities in teams and among individuals. The contribution connects the field of knowledge management to important streams in the wider business literature: process improvement, management of knowledge resources, design of information systems, etc. Whereas the model is highly bound to the experiment tasks, it has high explanatory power and high generalizability to other contexts.Practical implicationsTeam managers should take care to allow the optimal knowledge transfer situation within the team. This is particularly important when knowledge sharing is central, e.g. in product development and consulting processes. If this is not possible, interventions should be applied to the individual knowledge transfer situation to improve knowledge transfers among team members.Social implicationsFaster and more effective knowledge transfers improve the performance of both commercial and non-commercial organizations. As nowadays, the individual is faced with time pressure to finalize tasks, the deliberated increase of knowledge transfer velocity is a core capability to realize this goal. Quantitative knowledge transfer models result in more reliable predictions about the duration of knowledge transfers. These allow the target-oriented modification of knowledge transfer situations so that processes speed up, private firms are more competitive and public services are faster to citizens.Originality/valueTime consumption is an increasingly relevant factor in contemporary business but so far not been explored in experiments at all. This study extends current knowledge by considering quantitative effects on knowledge velocity and improved knowledge transfers.

Publisher

Emerald

Reference110 articles.

1. The speed factor and learning disabilities: The toll of slowness in adolescents;Dyslexia,1996

2. Knowledge management systems: issues, challenges, and benefits;Communications of the Association for Information Systems,1999

3. Review: knowledge management and knowledge management systems: conceptual foundations and research issues;MIS Quarterly,2001

4. Influencing factors and methods for knowledge transfer situations in Product Generation Engineering based on the SECI model,2018

5. A method to support the improvement of knowledge transfers in product and production engineering;Proceedings of the Design Society,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3