Microstructure, hardness and corrosion behaviour of friction-stir processed AA5083

Author:

Ramalingam Vaira Vignesh,Ramasamy Padmanaban,Datta Madhav

Abstract

Purpose The purpose of this study is to refine the microstructure and improve the corrosion behaviour of aluminium alloy AA5083 by subjecting it to friction stir processing (FSP). Design/methodology/approach FSP trials are conducted as per central composite design, by varying tool rotation speed, tool traverse speed and shoulder diameter at three levels. The microstructure is examined and the hardness is measured for both the base material and the processed workpieces. The corrosion behaviour of the base material and processed workpieces is studied using potentiodynamic polarization technique for three different testing temperatures, and the corrosion current and corrosion rate are calculated. Findings The results reveal that FSP refined the grains, dispersed secondary phases, increased the hardness and improved the corrosion resistance of most of the friction stir processed specimens than the base material at all the three testing temperatures. Grain refinement and fine dispersion of ß phase improves the hardness and corrosion resistance of most of the FSPed specimens. However partial dissolution of ß phase decreases the hardness in some of the specimens. Most of the FSPed specimens displayed more positive potential than the base material at all the testing temperatures representing a higher nobility than the base material, as a result of fine dispersion of secondary phase particles in the matrix. Large pits formed on the surface of the base specimen indicating a higher corrosion rate at all three testing temperatures. The SEM image of FSPed specimens reveals the occurrence of very few pits and minimal corrosion products on the surface, which indicates lower corrosion rate. Originality/value The corrosion mechanism of the friction stir-processed AA5083 specimens is found to be a combination of activation and concentration polarization.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3