Sacrificial anode materials to protect marine grade steel structures: a review

Author:

Vaira Vignesh Ramalingam1ORCID,Sathiya P.2

Affiliation:

1. Department of Mechanical Engineering, Amrita School of Engineering , 77649 Amrita Vishwa Vidyapeetham , Coimbatore 641112 , India

2. Department of Production Engineering , 93084 National Institute of Technology , Tiruchirappalli , India

Abstract

Abstract Marine structures are constantly exposed to the corrosive effects of seawater, making effective corrosion protection crucial for their longevity and performance. Sacrificial anodes, commonly made of zinc, aluminum, or magnesium alloys, are widely employed to mitigate corrosion by sacrificing themselves to protect the steel structures. However, the selection and implementation of sacrificial anode materials present various challenges that need to be addressed. This paper explores the challenges associated with sacrificial anode materials for steel structures and provides potential solutions. To overcome these challenges, the paper proposes solutions such as using advanced alloy compositions, protective coatings, hybrid anode systems, and improved design considerations. Furthermore, the importance of monitoring techniques to assess the performance and remaining lifespan of sacrificial anodes is emphasized. Several case studies and experimental findings are discussed to illustrate the effectiveness and limitations of sacrificial anode materials based on zinc alloys, aluminum alloys, and magnesium alloys. The paper highlights the need for ongoing research and development efforts to address the evolving demands of corrosion protection in marine environments.

Funder

Department of Science and Technology, Government of India

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3