Microstructure and tribological property of self-lubrication CBN abrasive composites containing molybdenum disulfide

Author:

Zhao Biao,Ding Wenfeng,Kuang Weijie,Fu Yucan

Abstract

Purpose This paper aims to evaluate the influence of molybdenum disulfide (MoS2) concentrations (5, 7.5, 10, 12.5 and 15 Wt.%) on the microstructure and tribological property of the self-lubrication cubic boron nitride (CBN) abrasive composites. Design/methodology/approach Three point bending method and rotating sliding test are used to evaluate the flexural strength and tribological property of self-lubricating CBN abrasive composites. Microstructure, wear morphology of the ball and scratch are supported by scanning electron microscopy, optical microscope and three-dimensional confocal microscopy, etc. Findings The MoS2 concentration has a significant influence on the interface microstructure between CBN abrasives and matrix alloys, and thus, affects the flexural strength of CBN abrasive composites. The grain fracture modes of CBN abrasive composites are transformed from the transgranular fracture into intergranular fracture as the MoS2 concentrations increase. Additionally, the friction coefficient of as-sintered samples decreases with the MoS2 concentrations. The MoS2 concentrations of 10 Wt.% are final determined to fabricate self-lubricating composites in basis of the mechanical and lubricating property. Originality/value The ball is fabricated under vacuum sintering process. The tribological property of self-lubricating CBN abrasive composites is evaluated in terms of the friction coefficient and morphologies of the ball and scratches after rotating sliding tests.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference22 articles.

1. Standard test method for transverse rupture strength of powder metallurgy (PM) specimens;ASTM Standard B528-12,2012

2. Self-lubricating composites containing MoS2: a review;Tribology International,2018

3. Development of a vitrified bonded superabrasive wheel with electrical conductivity and its application;Advanced Materials Research,2012

4. Grinding temperature and wheel wear of porous metal-bonded cubic boron nitride superabrasive wheels in high-efficiency deep grinding;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2017

5. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: effect of MoS2 particle addition;Surface & Coatings Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3