Observing quantum systems

Author:

Grössing Gerhard

Abstract

PurposeAs any attempts at explaining quantum theory in terms of simple, local “cause‐and‐effect” models have remained unsatisfactory, approaches from the perspectives of systems theory seem called for, which is rich in a variety of more complex understandings of causality.Design/methodology/approachThis paper presents one option for such approaches, which the author has introduced previously as “quantum cybernetics”: considering waves (but not “wave functions”!) and “particles” as mutually dependent system components, and thus defining “organizationally closed systems” characterized by a fundamental circular causality. Using such an approach, a new look can be achieved on both classical and quantum physics.FindingsIt was found that quantum theory's most fundamental equation, the Schrödinger equation, can actually be derived from classical physics, once the latter is considered anew, i.e. under said approach involving both particles and (Huygens) waves. In fact, the only difference to existing views is that Huygens waves are here considered to be real, physically effective waves in some hypothesized sub‐quantum medium, rather than mere formal tools.Originality/valueWhat is particularly new in the present paper is that quantum systems can be described by what Heinz von Foerster has called “nontrivial machines”, whereas the corresponding classical counterparts turn out to behave as “trivial machines”. This should provide enough stimulus for discussing system theoretical issues also in the context of the foundations of quantum theory.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3