Three‐dimensional modelling of bond behaviour between concrete and FRP reinforcement

Author:

Salomoni Valentina,Mazzucco Gianluca,Pellegrino Carlo,Majorana Carmelo

Abstract

PurposeThe purpose of this paper is to investigate the bond behaviour between fiber reinforced polymer (FRP) sheets and concrete elements, starting from available experimental evidences, through a calibrated and upgraded 3D mathematical‐numerical model.Design/methodology/approachThe complex mechanism of debonding/peeling failure of FRP reinforcement is studied within the context of damage mechanics to appropriately catch transversal effects and developing a more realistic and comprehensive study of the delamination process. The FE ABAQUS© code has been supplemented with a numerical procedure accounting for Mazars's damage law inside the contact algorithm.FindingsIt has been shown that such an approach is able to catch the delamination evolution during loading processes as well.Originality/valueA Drucker‐Prager constitutive law is adopted for concrete whereas FRP elements are assumed to behave in a linear‐elastic manner, possibly undertaking large strains/displacements. Surface‐to‐surface contact conditions have been applied between FRP and adjacent concrete, including the enhancement given by the strain‐softening law according to Mazars' damage model. The procedure has been introduced to describe the coupled behaviour between concrete, FRP and adhesive resulting in specific bonding‐debonding features under different load levels.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3