Numerical Modeling of Single-Lap Shear Bond Tests for Composite-Reinforced Mortar Systems

Author:

Dimitri Rossana1ORCID,Rinaldi Martina1,Trullo Marco1,Tornabene Francesco1ORCID

Affiliation:

1. Department of Innovation Engineering, School of Engineering, University of Salento, 73100 Lecce, Italy

Abstract

The large demand of reinforcement systems for the rehabilitation of existing concrete and masonry structures, has recently increased the development of innovative methods and advanced systems where the structural mass and weight are reduced, possibly avoiding steel reinforcements, while using non-invasive and reversible reinforcements made of pre-impregnated fiber nets and mortars in the absence of cement, commonly known as composite-reinforced mortars (CRMs). To date, for such composite materials, few experimental studies have been performed. Their characterization typically follows the guidelines published by the Supreme Council of Public Works. In such a context, the present work aims at studying numerically the fracturing behavior of CRM single-lap shear tests by implementing a cohesive zone model and concrete damage plasticity, in a finite element setting. These specimens are characterized by the presence of a mortar whose mechanical behavior has been defined by means of an analytical approximation based on exponential or polynomial functions. Different fracturing modes are studied numerically within the CRM specimen, involving the matrix and reinforcement phases, as well as the substrate-to-CRM interface. Based on a systematic investigation, the proposed numerical modeling is verified to be a useful tool to predict the response of the entire reinforcement system, in lieu of more costly experimental tests, whose results could be useful for design purposes and could serve as reference numerical solutions for further analytical/experimental investigations on the topic.

Funder

European Union—Next Generation EU

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3