Enhanced review facilitation service for C2C support: machine learning approaches

Author:

Ping Yanni,Buoye Alexander,Vakil Ahmad

Abstract

Purpose The purpose of this study is to present a methodology for enhancing the quality and usefulness of online reviews for prospective customers to investigate how this contemporary form of instrumental support can be facilitated to strengthen customer-to-customer support. Design/methodology/approach This study develops an analytics framework with applications of machine learning models using customer review data from Amazon.com. Linear regression is commonly used for review helpfulness and sales prediction. In this study, Random Forest model is applied because of its strong performance and reliability. To advance the methodology, a custom script in Python is created to generate Partial Dependence Plots for intensive exploration of the dependency interpretations of review helpfulness and sales. The authors also apply K-Means to cluster reviewers and use the results to generate reviewer qualification scores and collective reviewer scores, which are incorporated into the review facilitation process. Findings The authors find the average helpfulness ratio of the reviewer as the most important determinant of reviewer qualification. The collective reviewer qualification for a product created based on reviewers’ characteristics is found important to customers’ purchase intentions and can be used as a metric for product comparison. Practical implications The findings of this study suggest that service improvement efforts can be performed by developing software applications to monitor reviewer qualifications dynamically, bestowing a badge to top quality reviewers, redesigning review sorting interfaces and displaying the consumer rating distribution on the product page, resulting in improved information reliability and consumer trust. Originality/value This study adds to the research on customer-to-customer support in the service literature. As customer reviews perform as a contemporary form of instrumental support, the authors validate the determinants of review helpfulness and perform an intensive exploration of its dependency interpretation. Reviewer qualification and the collective reviewer qualification scores are generated as new predictors and incorporated into the helpfulness-based review facilitation services.

Publisher

Emerald

Subject

Marketing

Reference67 articles.

1. Deriving the pricing power of product features by mining consumer reviews;Management Science,2011

2. Fake review detection: classification and analysis of real and pseudo reviews;Technical Report,2013

3. Helpfulness of online consumer reviews: readers’ objectives and review cues;International Journal of Electronic Commerce,2012

4. Whose Online reviews to trust? Understanding reviewer trustworthiness and its impact on business;Decision Support Systems,2017

5. Customers helping customers: payoffs for linking customers;Journal of Services Marketing,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3