Experimental study on the fracture behavior variation of the Au stud bump bonding with different high temperature storage times

Author:

Zhang Xiangou,Wang Yuexing,Sun Xiangyu,Deng Zejia,Pu Yingdong,Zhang Ping,Huang Zhiyong,Zhou Quanfeng

Abstract

Purpose Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to study the long-term reliability of the Au stud bump treated by four different high temperature storage times (200°C for 0, 100, 200 and 300 h). Design/methodology/approach The bonding strength and the fracture behavior are investigated by chip shear test. The experiment is further studied by microstructural characterization approaches such as scanning electron microscope, energy dispersive spectrometer and so on. Findings It is recognized that there were mainly three typical fracture models during the chip shear test among all the Au stud bump samples treated by high temperature storage. For solder bump before aging, the fracture occurred at the interface between the Cu pad and the Au stud bump. As the aging time increased, the fracture mainly occurred inside the Au stud bump at 200°C for 100 and 200 h. When aging time increased to 300 h, it is found that the fracture transferred to the interface between the Au stud bump and the Al Pad. Originality/value In addition, the bonding strength also changed with the high temperature storage time increasing. The bonding strength does not change linearly with the high temperature storage time increasing but decreases first and then increases. The investigation shows that the formation of the intermetallic compounds because of the reaction between the Au and Al atoms plays a key role on the bonding strength and fracture behavior variation.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference28 articles.

1. Optimization of micro-interconnection distribution of gold stud bumps for thermo-sonic flip chip bonding,2022

2. Increasing bondability and bonding strength of gold stud bumps onto copper pads with a deposited titanium barrier layer;Microelectronic Engineering,2007

3. Intermetallic compounds at the interfaces of Ag–Pd alloy stud bumps with Al pads;IEEE Transactions on Components, Packaging and Manufacturing Technology,2023

4. Electronic packaging: flip-chip attachment,2001

5. Thermal and mechanical properties of flip chip package with Au stud bump;Materials Transactions,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3