The MSapeMER: a symmetric, scale-free and intuitive forecasting error measure for hospitality revenue management

Author:

Schwartz Zvi,Ma Jing,Webb Timothy

Abstract

Purpose Mean absolute percentage error (MAPE) is the primary forecast evaluation metric in hospitality and tourism research; however its main shortcoming is that it is asymmetric. The asymmetry occurs due to over or under forecasts that introduce bias into forecast evaluation. This study aims to explore the nature of asymmetry and designs a new measure, one that reduces the asymmetric properties while maintaining MAPE’s scale-free and intuitive interpretation characteristics. Design/methodology/approach The study proposes and tests a new forecasting accuracy measure for hospitality revenue management (RM). A computer simulation is used to assess and demonstrate the problem of asymmetry when forecasting with MAPE, and the new measures’ (MSapeMER, that is, Mean of Selectively applied Absolute Percentage Error or Magnitude of Error Relative to the estimate) ability to reduce it. The MSapeMER’s effectiveness is empirically validated by using a large set of hotel forecasts. Findings The study demonstrates the ability of the MSapeMER to reduce the asymmetry bias generated by MAPE. Furthermore, this study demonstrates that MSapeMER is more effective than previous attempts to correct for asymmetry bias. The results show via simulation and empirical investigation that the error metric is more stable and less swayed by the presence of over and under forecasts. Research limitations/implications It is recommended that hospitality RM researchers and professionals adopt MSapeMER when using MAPE to evaluate forecasting performance. The MSapeMER removes the potential bias that MAPE invites due to its calculation and presence of over and under forecasts. Therefore, forecasting evaluations may be less affected by the presence of over and under forecasts and their ability to bias forecasting results. Practical implications Hospitality RM should adopt this measure when MAPE is used, to reduce biased decisions driven by the “asymmetry of MAPE.” Originality/value The MAPE error metric exhibits an asymmetry problem, and this paper proposes a more effective solution to reduce biased results with two major methodological contributions. It is first to systematically study the characteristics of MAPE’s asymmetry, while proposing and testing a measure that considerably reduces the amount of asymmetry. This is a critical contribution because MAPE is the primary forecasting metric in hospitality and tourism studies. The second methodological contribution is a procedure developed to “quantify” the asymmetry. The approach is demonstrated and allows future research to compare asymmetric characteristics among various accuracy measures.

Publisher

Emerald

Subject

Tourism, Leisure and Hospitality Management

Reference30 articles.

1. Modeling and forecasting daily hotel demand: a comparison based on SARIMAX, neural networks, and GARCH models;Forecasting,2021

2. Forecasting,2022

3. Long-range forecasting: from crystal ball to computer,1985

4. Error measures for generalizing about forecasting methods: empirical comparisons;International Journal of Forecasting,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3