Estimating restaurants’ unconstrained demand: a systematic approach to reducing structural bias in forecast accuracy measures

Author:

Ma Jing

Abstract

Purpose The diffusion of technologies from other sectors, and innovations in kitchen equipment, fueled structural changes within the foodservice industry. However, this change comes at a price of disrupting the critical step of assessing the demand forecast accuracy. This study aims to explore a surprisingly unique and elevated complexity when assessing the critically important demand forecast accuracy. Design/methodology/approach The paper develops a mathematical model to describe and explore the nature of the problem in structural biased demand forecast accuracy assessment. It then uses numerical simulation to construct a market example to gain better insights on the bias characteristics. Finally, the forecast accuracy measurement’s inherent bias is contrasted with that of other typical hospitality forecasting setups. Findings This paper outlines the theoretical underpinnings of how demand forecasts in the central kitchen setup are dynamic and thus produce a structural bias. More specifically, this paper discovers how, in this context of orders from a central location, the forecasts set the capacity constraints, and, consequently, generate a considerably more biased forecast accuracy measure. Relying on such forecast accuracy measures can lead to serious negative business outcomes. Originality/value To the best of the author’s knowledge, this study is the first to show that in the unique new technology enabled environment of central kitchen operation, where daily dish demand forecasts set the daily constrained capacity levels, the accuracy measure is severely biased, and consequently accuracy is likely to deteriorate, which in turn, could lead to suboptimal decisions. The major theoretical contribution of this study is a novel analytical model which explains and describes the bias in the accuracy measurement.

Publisher

Emerald

Reference33 articles.

1. A review on mechanisms and commercial aspects of food preservation and processing;Agriculture and Food Security,2017

2. Strategic analysis of cloud kitchen–a case study;Management Today,2019

3. Cooper, J. (2021), “Central kitchens: how a site with no guests improves your guest experience and bottom line”, [Online], available at: www.ncrvoyix.com/resource/central-kitchens-how-a-site-with-no-guests-improves-your-guest-experience-and-bottom-line (accessed 14 April 2022).

4. DEPHNA (2021), “Why are restaurants turning to central production kitchens?”, [Online], available at: www.dephna.com/insights/restaurants-using-central-production-kitchens (accessed 14 April 2022).

5. Can demand forecast accuracy be linked to airline revenue?;Journal of Revenue and Pricing Management,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3