A practical comparison between the spectral techniques in solving the SDEs

Author:

El-Beltagy Mohamed

Abstract

Purpose The paper aims to compare and clarify the differences and between the two well-known decomposition spectral techniques; the Winer–Chaos expansion (WCE) and the Winer–Hermite expansion (WHE). The details of the two decompositions are outlined. The difficulties arise when using the two techniques are also mentioned along with the convergence orders. The reader can also find a collection of references to understand the two decompositions with their origins. The geometrical Brownian motion is considered as an example for an important process with exact solution for the sake of comparison. The two decompositions are found practical in analysing the SDEs. The WCE is, in general, simpler, while WHE is more efficient as it is the limit of WCE when using infinite number of random variables. The Burgers turbulence is considered as a nonlinear example and WHE is shown to be more efficient in detecting the turbulence. In general, WHE is more efficient especially in case of nonlinear and/or non-Gaussian processes. Design/methodology/approach The paper outlined the technical and literature review of the WCE and WHE techniques. Linear and nonlinear processes are compared to outline the comparison along with the convergence of both techniques. Findings The paper shows that both decompositions are practical in solving the stochastic differential equations. The WCE is found simpler and WHE is the limit when using infinite number of random variables in WCE. The WHE is more efficient especially in case of nonlinear problems. Research limitations/implications Applicable for SDEs with square integrable processes and coefficients satisfying Lipschitz conditions. Originality/value This paper fulfils a comparison required by the researchers in the stochastic analysis area. It also introduces a simple efficient technique to model the flow turbulence in the physical domain.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference38 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3