Analytical and Computational Analysis of Fractional Stochastic Models Using Iterated Itô Integrals

Author:

Noor Adeeb1ORCID,Bazuhair Mohammed2ORCID,El-Beltagy Mohamed3ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 80221, Saudi Arabia

2. Department of Pharmacology, Faculty of Medicine, King Abdelaziz University, Jeddah 80221, Saudi Arabia

3. Department of Engineering Mathematics & Physics, Faculty of Engineering, Cairo University, Giza 12613, Egypt

Abstract

Biological and financial models are examples of dynamical systems where both stochastic and historical behavior are important to be considered. The fractional Brownian motion (fBM) is commonly used, sometimes with fractional-order derivatives, to model the combined stochastic and fractional effects. Recently, spectral techniques are used to analyze models with fBM using, e.g., iterated Itô fractional integrals such as the fractional Wiener-Hermite (FWHE). In the current work, FWHE is generalized and adapted to be consistent with the Malliavin calculus approach. The conditions for existence and uniqueness are outlined in addition to the proof of convergence. The solution algorithm is described in detail. Using FWHE, the stochastic fractional model is replaced by a deterministic fractional-order system that can be handled using well-known mathematical tools to evaluate the solution statistics. Analytical solutions can be obtained for many important models such as the fractional stochastic Black–Scholes model. The convergence is studied and compared with the exact solution and high convergence is noticed compared with other techniques. A general numerical algorithm is described to analyze the resultant deterministic system in the case of no feasible analytical solutions. The algorithm is applied to study and simulate the population model with nonlinear losses for different values of the Hurst parameter. The results show the efficiency of FWHE in analyzing practical linear and nonlinear models.

Funder

Deputyship for Research Innovation, Ministry of Education in Saudi Arabia

King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3