Case-based reasoning and electromagnetism-like method in construction management

Author:

Kartelj Aleksandar,Šurlan Nebojša,Cekić Zoran

Abstract

Purpose – The presented research proposes a method aimed to improve a case retrieval phase of the case-based reasoning (CBR) system through optimization of feature relevance parameters, i.e. feature weights. Design/methodology/approach – The improvement is achieved by applying the metaheuristic optimization technique, called electromagnetism-like algorithm (EM), in order to appropriately adjust the feature weights used in k-NN classifier. The usability of the proposed EM k-NN algorithm is much broader since it can also be used outside the CBR system, e.g. for solving general pattern recognition tasks. Findings – It is showed that the proposed EM k-NN algorithm improves the baseline k-NN model and outperforms the appropriately tuned artificial neural network (ANN) in the task of predicting the case (data record) output values. The results are verified by performing statistical analysis. Research limitations/implications – The proposed method is currently adjusted to deal with numerical features, so, as a direction for future work, the variant of EM k-NN algorithm that deals with symbolic or some more complex types of features should be considered. Practical implications – EM k-NN algorithm can be incorporated as a case retrieval component inside a general CBR system. This is the future direction of the investigation since the authors intend to build a complete specialized CBR system for construction project management. The overall CBR with incorporated EM k-NN will have significant implication in the construction management as it will be able to produce more accurate prediction of viability and the life cycle of new construction projects. Originality/value – The electromagnetism-like algorithm is applied to the problem of finding feature weights for the first time. EM potential for solving the problem of weighting features lies in its internal structure because it is based on the real-valued EM vectors. The overall EM k-NN algorithm is applied on data sets generated from real construction projects data corpus. The proposed algorithm proved its efficiency as it outperformed baseline k-NN model and ANN. Its applicability in more complex and specialized CBR systems is high since it can be easily added due to its modular (black-box) design.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3