Mechanical behavior of an additively manufactured poly-carbonate specimen: tensile, flexural and mode I fracture properties

Author:

Sedighi Iman,Ayatollahi Majid R.,Bahrami Bahador,Pérez-Martínez Marco A.,Garcia-Granada Andres A.

Abstract

Purpose The purpose of this paper is to investigate the effect of layer orientation on the tensile, flexural and fracture behavior of additively manufactured (AM) polycarbonate (PC) produced using fused deposition modeling (FDM). Design/methodology/approach An experimental approach is undertaken and a total number of 48 tests are conducted. Two types of tensile specimens are used and their mechanical behavior and fracture surfaces are studied. Also, circular parts with different layer orientations are printed and two semi-circular bending (SCB) samples are extracted from each part. Finally, the results of samples with different build directions are compared to one another to better understand the mechanical behavior of additively manufactured PC. Findings The results demonstrate anisotropy in the tensile, flexural and fracture behavior of the additively manufactured PC parts with the latter being less anisotropic compared to the first two. It is also demonstrated that the anisotropy of the elastic modulus is small and can be neglected. Tensile strength ranges from 40 MPa to 53 MPa. At the end, mode I fracture toughness prediction curves are provided for different directions of the FDM samples. Fracture toughness ranges from 1.93 to 2.37 MPa.mm1/2. Originality/value The SCB specimen, a very suitable geometry for characterizing anisotropic materials, was used to characterize FDM parts for the first time. Also, the fracture properties of the AM PC have not been studied by the researchers in the past. Therefore, fracture toughness prediction curves are presented for this anisotropic material. These curves can be very suitable for designing parts that are going to be produced by 3D printing. Moreover, the effect of the area to perimeter ratio on the tensile properties of the printed parts is investigated.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference32 articles.

1. Additively manufactured PLA under static loading: strength/cracking behaviour vs. deposition angle,2017

2. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications;Journal of Manufacturing Processes,2018

3. Fracture resistance measurement of fused deposition modeling 3D printed polymers;Polymer Testing,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3