Experimental and theoretical investigation of the influence of post-curing on mixed mode fracture properties of 3d-printed polymer samples

Author:

Bahrami BahadorORCID,Talebi Hossein,Momeni M. M.,Ayatollahi M. R.

Abstract

AbstractThis study explores the mechanical properties and fracture characteristics of additively manufactured acrylonitrile butadiene styrene specimens, focusing on the impact of raster angle and post-process heat treatment. To this end, a large number of tensile and semi-circular bending samples with three distinct raster angles of 0/90°, 22/ − 68°, and 45/ − 45° were prepared and exposed to four types of heat treatments with different temperature and pressure conditions. Simultaneously, theoretical models of maximum tangential stress (MTS) and generalized MTS (GMTS) were developed to estimate the onset of specimen fracture under mixed-mode in-plane loading conditions. Recognizing the non-linear behavior within the stress–strain curve of tensile test samples, particularly in the annealed samples, an effort was undertaken to transform the original ductile material into a virtual brittle material through the application of the equivalent material concept (EMC). This approach serves the dual purpose of bypassing intricate and tedious elastoplastic analysis, while concurrently enhancing the precision of the GMTS criterion. The experimental findings have revealed that while the annealing process has a minimal effect on the yield strength, it considerably enhances energy absorption capacity, increases fracture toughness, and reduces the anisotropy. Additionally, the combined EMC-GMTS criterion has demonstrated its capability to predict the failure of the additively manufactured parts with an acceptable level of accuracy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3