Interfacial reaction between Ni particle reinforcements and liquid Sn-based eutectic solders

Author:

Lin Chung-Yung

Abstract

Purpose This paper aims to derive a model of growth kinetics of the intermetallic compound (IMC) layer formed in the reaction between liquid Sn-based solders and Ni particle reinforcements and to compare with the experimental data to verify the effects of Sn concentration and alloying element. Design/methodology/approach A composite solder was manufactured by mechanically introducing Ni particle reinforcements into a solder matrix. The effect of the non-reactive alloying elements, Ag, Pb and Bi, on the growth kinetics of the IMC formed between liquid Sn-based eutectic solders and Ni particles, reacting this composite solder at 250°C–280°C was studied. Findings Experimental results showed that only the IMC Ni3Sn4 was present as a reaction product. Using the diffusion-controlled reaction mechanism, a kinetic equation quantifying both Sn concentration and alloying element effects was derived and verified by comparing the kinetic data obtained using four different solders with different concentrations of Sn and the alloying elements. Originality/value The similarity between the activation energies of these four solders confirms that the diffusion of Sn atoms through the IMC is the rate-controlling step. Besides, the kinetic values are independent of the geometry of Ni, whether spherical particle or flat substrate.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures;Acta Materialia,2002

2. Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions;Journal of Electronic Materials,1998

3. Effect of adding 0.5 wt% ZnO nanoparticles, temperature and strain rate on tensile properties of Sn–5.0 wt% Sb–0.5 wt% Cu (SSC505) lead free solder alloy;Materials Science and Engineering: A,2016

4. Enhanced ductility and mechanical strength of Ni-doped Sn–3.0 Ag–0.5 Cu lead-free solders;Materials & Design (1980-2015),2013

5. Microstructure and kinetic analysis of the properties and behavior of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates;Journal of Materials Science: Materials in Electronics,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3