Abstract
Purpose
This paper aims to derive a model of growth kinetics of the intermetallic compound (IMC) layer formed in the reaction between liquid Sn-based solders and Ni particle reinforcements and to compare with the experimental data to verify the effects of Sn concentration and alloying element.
Design/methodology/approach
A composite solder was manufactured by mechanically introducing Ni particle reinforcements into a solder matrix. The effect of the non-reactive alloying elements, Ag, Pb and Bi, on the growth kinetics of the IMC formed between liquid Sn-based eutectic solders and Ni particles, reacting this composite solder at 250°C–280°C was studied.
Findings
Experimental results showed that only the IMC Ni3Sn4 was present as a reaction product. Using the diffusion-controlled reaction mechanism, a kinetic equation quantifying both Sn concentration and alloying element effects was derived and verified by comparing the kinetic data obtained using four different solders with different concentrations of Sn and the alloying elements.
Originality/value
The similarity between the activation energies of these four solders confirms that the diffusion of Sn atoms through the IMC is the rate-controlling step. Besides, the kinetic values are independent of the geometry of Ni, whether spherical particle or flat substrate.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science
Reference18 articles.
1. Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures;Acta Materialia,2002
2. Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions;Journal of Electronic Materials,1998
3. Effect of adding 0.5 wt% ZnO nanoparticles, temperature and strain rate on tensile properties of Sn–5.0 wt% Sb–0.5 wt% Cu (SSC505) lead free solder alloy;Materials Science and Engineering: A,2016
4. Enhanced ductility and mechanical strength of Ni-doped Sn–3.0 Ag–0.5 Cu lead-free solders;Materials & Design (1980-2015),2013
5. Microstructure and kinetic analysis of the properties and behavior of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates;Journal of Materials Science: Materials in Electronics,2014
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献