Effect of external static magnetic field on the particle distribution, the metallurgical process and the microhardness of Sn3.5Ag solder with magnetic Ni particles

Author:

Wang Jianhua,Xu Hongbo,Zhou Li,Liu Ximing,Zhao Hongyun

Abstract

Purpose This paper aims to investigate the mechanism of Ni particles distribution in the liquid Sn3.5Ag melt under the external static magnetic field. The control steps of Ni particles and the Sn3.5Ag melt metallurgical process were studied. After aging, the microhardness of pure Sn3.5Ag, Sn3.5Ag containing randomly distributed Ni particles and Sn3.5Ag containing columnar Ni particles were compared. Design/methodology/approach Place the sample in a crucible for heating. After the sample melts, place a magnet directly above and below the sample to provide a magnetic field. Sn3.5Ag with the different morphological distribution of Ni particles was obtained by holding for different times under different magnetic field intensities. Finally, pure Sn3.5Ag, Sn3.5Ag with random distributed Ni particles and Sn3.5Ag with columnar Ni particles were aged and their microhardness was tested after aging. Findings The experimental results show that with the increase of magnetic field strength, the time for Ni particle distribution in Sn3.5Ag melt to reach equilibrium is shortened. After aging, the microhardness of Sn3.5Ag containing columnar nickel particles is higher than that of pure Sn3.5Ag and Sn3.5Ag containing randomly distributed nickel particles. A chemical reaction is the control step in the metallurgical process of nickel particles and molten Sn3.5Ag. Originality/value Under the action of the magnetic field, Ni particles in Sn3.5Ag melt will be arranged into columns. With the increase of magnetic field strength, the shorter the time for Ni particles in Sn3.5Ag melt to arrange in a column. With the extension of the service time of the solder joint, if Sn3.5Ag with columnar nickel particles is used as the solder joint material, its microhardness is better than Sn3.5Ag with arbitrarily distributed nickel particles and pure Sn3.5Ag.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. Control of lead corrosion by chemical treatment;CORROSION,1991

2. Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys;Proceedings of the National Academy of Sciences,2010

3. Isothermal aging effects on the microstructure and solder bump shear strength of eutectic Sn37Pb and Sn3.5Ag solders;Microelectronics Reliability,2006

4. The relation between valency, axial ratio, Young's modulus and resistivity of rapidly solidified tin-based eutectic alloys;Journal of Materials Science: Materials in Electronics,2005

5. Microstructure formation in Sn-Cu-Ni solder alloys;JOM,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3