Artificial intelligence exploitation in facility management using deep learning

Author:

Marzouk Mohamed,Zaher Mohamed

Abstract

Purpose This paper aims to apply a methodology that is capable to classify and localize mechanical, electrical and plumbing (MEP) elements to assist facility managers. Furthermore, it assists in decreasing the technical complexity and sophistication of different systems to the facility management (FM) team. Design/methodology/approach This research exploits artificial intelligence (AI) in FM operations through proposing a new system that uses a deep learning pre-trained model for transfer learning. The model can identify new MEP elements through image classification with a deep convolutional neural network using a support vector machine (SVM) technique under supervised learning. Also, an expert system is developed and integrated with an Android application to the proposed system to identify the required maintenance for the identified elements. FM team can reach the identified assets with bluetooth tracker devices to perform the required maintenance. Findings The proposed system aids facility managers in their tasks and decreases the maintenance costs of facilities by maintaining, upgrading, operating assets cost-effectively using the proposed system. Research limitations/implications The paper considers three fire protection systems for proactive maintenance, where other structural or architectural systems can also significantly affect the level of service and cost expensive repairs and maintenance. Also, the proposed system relies on different platforms that required to be consolidated for facility technicians and managers end-users. Therefore, the authors will consider these limitations and expand the study as a case study in future work. Originality/value This paper assists in a proactive manner to decrease the lack of knowledge of the required maintenance to MEP elements that leads to a lower life cycle cost. These MEP elements have a big share in the operation and maintenance costs of building facilities.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference62 articles.

1. A review on the expert system and its applications in civil engineering;International Journal of Civil Engineering and Built Environment,2014

2. A future for facility management;Construction Innovation,2017

3. Automated visual recognition of dump trucks in construction videos;Journal of Computing in Civil Engineering,2012

4. High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications;Visualization in Engineering,2013

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3