Evaluation of fan-out wafer level package strength

Author:

Xu Cheng,Zhong Z.W.,Choi W.K.

Abstract

Purpose The fan-out wafer level package (FOWLP) becomes more and more attractive and popular because of its flexibility to integrate diverse devices into a very small form factor. The strength of ultrathin FOWLP is low, and the low package strength often leads to crack issues. This paper aims to study the strength of thin FOWLP because the low package strength may lead to the reliability issue of package crack. Design/methodology/approach This paper uses the experimental method (three-point bending test) and finite element method (ANSYS simulation software) to evaluate the FOWLP strength. Two theoretical models of FOWLP strength are proposed. These two models are based on the location of FOWLP initial fracture point. Findings The results show that the backside protection tape does not have the ability to enhance the FOWLP strength, and the strength of over-molded structure FOWLP is superior to that of other structure FOWLPs with the same thickness level. Originality/value There is ample research about the silicon strength and silicon die strength. However, there is little research about the package level strength and no research about the FOWLP strength. The FOWLP is made up of various materials. The effect of individual component and external environment on the FOWLP strength is uncertain. Therefore, the study of strength behavior of FOWLP is significant.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference38 articles.

1. Evaluation by three-point-bend and ball-on-ring tests of thinning process on silicon die strength;Microelectronics Reliability,2012

2. Simulation of mechanical stress during bending tests for crystalline wafers,2003

3. Weibull statistics of silicon die fracture,2004

4. Determination of compressive strength of unidirectional composites by three-point bending tests;Polymer Testing,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3