Drying behaviour and microbial load after water damage

Author:

Zegowitz Andreas,Renzl Anna,Hofbauer Wolfgang,Meyer Joerg,Kuenzel Hartwig

Abstract

Purpose – The water damage in buildings because of leaking pipes and increasingly because of floods and severe weather require professional help. Methods for improved repair and remediation techniques have to be developed. The water damage in buildings because of leaking pipes and increasingly because of floods and severe weather require professional help. Methods for improved repair and remediation techniques have to be developed. The paper aims to discuss these issues. Design/methodology/approach – Therefore, large scale laboratory tests with four rooms, each with three types of masonry walls (Figure 2 and Plate 1) and typical floors for intermediate storeys with insulation were performed within a climate simulator. Artificial water damage was provoked through watering the floors, and the dispersion of water in the floors and the rising damp in the walls was measured. In the follow-up to the watering of the floors, a company specialized in drying wet buildings, installed systems for under floor drying and wall drying. Findings – The drying process of the different components and layers of the floor construction and walls was monitored by a measuring system with more than 300 sensors for moisture content, relative humidity and temperature accompanied by thermography and demonstrated so the advantages and disadvantages of the different tested drying systems. After providing an initial contamination that is typical for construction sites, the microbial load (mould infestation) within the wet components was monitored at different times by experienced biologists. So after three weeks under floor drying no mould growth could be asserted but more bacteria than expected were found. Originality/value – The aim of the research was to gain more confidence in selecting appropriate drying procedures and systems in order to identify the right moment for terminating the drying process. A further intent was to acquire data for computer simulations.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference16 articles.

1. DIN ISO 16000-17:2010-06 (2010), “Innenraumluftverunreinigungen – Teil 17: Nachweis und Zählung von Schimmelpilzen – Kultivierungsverfahren”, Beuth-Verlag, Berlin.

2. GDV (2012), “Kleines Leck, großer Schaden, So schützen Sie sich vor Wasserschäden”, 30 January, available at: www.gdv.de/2012/01/mieter-und-hausbesitzer-sollten-ihre-wasser-und-heizungsrohre-jetzt-im-auge-behalten/

3. Kuenzel, H. and Zegowitz, A. (2014a), “Untersuchung des Trocknungsverhaltens von Estrich-Dämmschichten und angrenzenden Wänden mit mechanischen Trocknungsverfahren”, Test Report No. P17-086/2014 on behalf of Sprint Sanierung GmbH, Köln, Fraunhofer Institute for Building Physics, 22 Juli.

4. Kuenzel, H. and Zegowitz, A. (2014b), “Untersuchung des Trocknungsverhaltens von Estrich-Dämmschichten und anliegenden Wandaufbauten bei Anwendung mechanischer Trocknungssysteme, 3. Versuchsabschnitt”, Test Report No. P17-222/2014 on behalf of Sprint Sanierung GmbH, Köln, Fraunhofer Institute for Building Physics, 15 September.

5. Mayer, F. , Hofbauer, W. and Renzl, A. (2014), “Untersuchungen des Trocknungsverhaltens von Estrich-Dämmschichten und anliegenden Wandaufbauten im Unterdruckverfahren – Mikrobiologische Begleituntersuchung”, Test Report No. BBHB-015/2014/282 on behalf of Sprint Sanierung GmbH, Herrn Dr Joerg Meyer, Köln, Fraunhofer Institute for Building Physics, 3 September.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3