Industry 4.0 oriented predictive analytics of cardiovascular diseases using machine learning, hyperparameter tuning and ensemble techniques

Author:

Ahamed Jameel,Mir Roohie Naaz,Chishti Mohammad Ahsan

Abstract

Purpose The world is shifting towards the fourth industrial revolution (Industry 4.0), symbolising the move to digital, fully automated habitats and cyber-physical systems. Industry 4.0 consists of innovative ideas and techniques in almost all sectors, including Smart health care, which recommends technologies and mechanisms for early prediction of life-threatening diseases. Cardiovascular disease (CVD), which includes stroke, is one of the world’s leading causes of sickness and deaths. As per the American Heart Association, CVDs are a leading cause of death globally, and it is believed that COVID-19 also influenced the health of cardiovascular and the number of patients increases as a result. Early detection of such diseases is one of the solutions for a lower mortality rate. In this work, early prediction models for CVDs are developed with the help of machine learning (ML), a form of artificial intelligence that allows computers to learn and improve on their own without requiring to be explicitly programmed. Design/methodology/approach The proposed CVD prediction models are implemented with the help of ML techniques, namely, decision tree, random forest, k-nearest neighbours, support vector machine, logistic regression, AdaBoost and gradient boosting. To mitigate the effect of over-fitting and under-fitting problems, hyperparameter optimisation techniques are used to develop efficient disease prediction models. Furthermore, the ensemble technique using soft voting is also used to gain more insight into the data set and accurate prediction models. Findings The models were developed to help the health-care providers with the early diagnosis and prediction of heart disease patients, reducing the risk of developing severe diseases. The created heart disease risk evaluation model is built on the Jupyter Notebook Web application, and its performance is calculated using unbiased indicators such as true positive rate, true negative rate, accuracy, precision, misclassification rate, area under the ROC curve and cross-validation approach. The results revealed that the ensemble heart disease model outperforms the other proposed and implemented models. Originality/value The proposed and developed CVD prediction models aims at predicting CVDs at an early stage, thereby taking prevention and precautionary measures at a very early stage of the disease to abate the predictive maintenance as recommended in Industry 4.0. Prediction models are developed on algorithms’ default values, hyperparameter optimisations and ensemble techniques.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3