Quantification of the stock market value at risk by using FIAPARCH, HYGARCH and FIGARCH models

Author:

Khumalo Moses1,Mashele Hopolang1,Seitshiro Modisane23

Affiliation:

1. Department of Decision Sciences, University of South Africa, Pretoria, 0003, South Africa

2. Centre for Business Mathematics and Informatics, North-West University, Potchefstroom 2531, South Africa

3. National Institute for Theoretical and Computational Sciences (NITheCS), South Africa

Abstract

<abstract><p>The South African financial market is developing with periods of high and low volatility. Employing an adequate volatility model is essential to manage market risk. This research study was designed to investigate the effectiveness of the fractionally integrated asymmetric power autoregressive conditional heteroskedasticity contrasted with long-memory GARCH-type models, such as the fractionally integrated generalized autoregressive conditional heteroskedasticity and the hyperbolic generalized autoregressive conditional heteroskedasticity for producing the measure of market risk known as the value at risk. These long-memory GARCH-type models assume that the distributions of the index returns follow normal, student-$ t $, skewed student-$ t $ and generalized error distributions. The historical closing price time series of the Johannesburg Stock Exchange all share, the mining and the banking indices are considered. The value at risk and its backtesting for short and long trading positions on the different confident levels are computed and they correspond to the right and left quantiles of the return distributions, respectively. The results reveal that FIAPARCH with a standard student-$ t $ distribution is an appropriate model for producing a robust value at risk in the context of mining and banking indices. Alternatively, FIGARCH with the assumed skewed student-$ t $ distribution model is a good fit to produce a value at risk for the Johannesburg Stock Exchange All Share Index.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3