Influence of the area of a thermal pad on optical and thermal parameters of LED modules

Author:

Górecki Krzysztof,Ptak Przemysław Piotr

Abstract

Purpose The purpose of this paper is to present and discuss the results of measurements illustrating influence of the area of a thermal pad and the kind of the used base on thermal and optical parameters of LED modules. Design/methodology/approach LED modules including six power LEDs are designed. In the layout of these modules, different areas of a thermal pad of each LED are used. These modules are made using the classical FR-4 base and metal core printed circuit board (MCPCB). Thermal and optical parameters of all the tested modules are measured using the method elaborated by the authors. Findings The obtained results of measurements prove that increasing the area of a thermal pad causes a decrease in thermal resistance of the tested LED modules and an increase in power density of the emitted light. The role of the area of a thermal pad is more important for the classical FR-4 base than for MCPCB. Research limitations/implications Investigations were performed for only two values of the area of thermal pads and selected values of LEDs forward current. Originality/value The presented results of investigations show how the used layout and type of the used base of these modules influence optical and thermal parameters of LED modules. Changing the base of a module can cause even a double decrease in thermal resistance and a double increase in power density of the emitted light.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference40 articles.

1. Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters – a review;IEEE Transactions on Power Electronics,2012

2. LED light emission as a function of thermal conditions,2008

3. Temperature measurements of semiconductor devices – a review,2004

4. Light emitting diodes reliability review;Microelectronics Reliability,2012

5. Cree (2020), “Datasheet of diodes of the type XRE”, available at: www.cree.com/led-components/media/documents/XLamp7090XRE-16F.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3