The Influence of Soldering Profile on the Thermal Parameters of Insulated Gate Bipolar Transistors (IGBTs)

Author:

Pietruszka Adrian,Górecki PawełORCID,Wroński Sebastian,Illés BalázsORCID,Skwarek AgataORCID

Abstract

The effect of solder joint fabrication on the thermal properties of IGBTs soldered onto glass-epoxy substrate (FR4) was investigated. Glass-epoxy substrates with a thickness of 1.50 mm, covered with a 35 μm thick Cu layer, were used. A surface finish was prepared from a hot air leveling (HAL) Sn99Cu0.7Ag0.3 layer with a thickness of 1 ÷ 40 μm. IGBT transistors NGB8207BN were soldered with SACX0307 (Sn99Ag0.3Cu0.7) paste. The samples were soldered in different soldering ovens and at different temperature profiles. The thermal impedance Zth(t) and thermal resistance Rth of the samples were measured. Microstructural and voids analyses were performed. It was found that the differences for different samples reached 15% and 20% for Zth(t) and Rth, respectively. Although the ratio of the gas voids in the solder joints varied between 3% and 30%, no correlation between the void ratios and Rth increase was found. In the case of the different soldering technologies, the microstructure of the solder joint showed significant differences in the thickness of the intermetallic compounds (IMC) layer; these differences correlated well with the time above liquidus during the soldering process. The thermal parameters of IGBTs could be changed due to the increased thermal conductivity of the IMC layer as compared to the thermal conductivity of the solder bulk. Our research highlighted the importance of the soldering technology used and the thermal profile in the case of the assembly of IGBT components.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

National Research Development and Innovation Office - Hungary

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sn99Ag0.3Cu0.7–TiO2 composite solder joints and their influence on thermal parameters of power components;Soldering & Surface Mount Technology;2024-07-09

2. Influence of the soldering process quality on thermal resistance of RF transistors;2024 25th International Microwave and Radar Conference (MIKON);2024-07-01

3. Selecting Temperature Sensitive Parameter for a Transient Thermal Impedance Measurements of E-Mode Power GaN HEMT;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

4. Impact of hot air gun soldering process parameters on the electromechanical properties of electronic yarn;The Journal of The Textile Institute;2024-05-29

5. Influence of Reflow Temperature Profile on the Intermetallic Layers Thickness at Different Surface Finishes;2024 47th International Spring Seminar on Electronics Technology (ISSE);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3