Maximizing agreement on diverse ontologies with “wisdom of crowds” relation classification

Author:

Zhitomirsky-Geffet Maayan,Shalom Erez Eden

Abstract

Purpose – Ontologies are defined as consensual formal conceptualisation of shared knowledge. However, the explicit overlap between diverse ontologies is usually very low since they are typically constructed by different experts. Hence, the purpose of this paper is to suggest to exploit “wisdom of crowds” to assess the maximal potential for inter-ontology agreement on controversial domains. Design/methodology/approach – The authors propose a scheme where independent ontology users can explicitly express their opinions on the specified set of ontologies. The collected user opinions are further employed as features for machine classification algorithm to distinguish between the consensual ontological relations and the controversial ones. In addition, the authors devised new evaluation methods to measure the reliability and accuracy of the presented scheme. Findings – The accuracy of the relation classification (90 per cent) and the reliability of user agreement annotations were quite high (over 90 per cent). These results indicate a fair ability of the scheme to learn the maximal set of consensual relations out of the specified set of diverse ontologies. Research limitations/implications – The data sets and the group of participants in our experiments were of limited size and thus the presented results are promising but cannot be generalised at this stage of research. Practical implications – A diversity of opinions expressed by different ontologies has to be resolved in order to digitise many domains of knowledge (e.g. cultural heritage, folklore, medicine, economy, religion, history, art). This work presents a methodology to formally represent this diverse knowledge in a rich semantic scheme where there is a need to distinguish between the commonly shared and the controversial relations. Originality/value – To the best of the knowledge this is a first proposal to consider crowd-based evaluation and classification of ontological relations to maximise the inter-ontology agreement.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3