Investigation of moisture-induced crack propagation in the soft-termination multi-layer ceramic capacitor during thermal reflow process

Author:

Bachok Zuraihana,Abas Aizat,Raja Gobal Hehgeraj A/L,Yusoff Norwahida,Ramli Mohamad Riduwan,Mohd Sharif Mohamad Fikri,Che Ani Fakhrozi,Muhamed Mukhtar Muhamed Abdul Fatah

Abstract

Purpose This study aims to investigate crack propagation in a moisture-preconditioned soft-termination multi-layer ceramic capacitor (MLCC) during thermal reflow process. Design/methodology/approach Experimental and extended finite element method (X-FEM) numerical analyses were used to analyse the soft-termination MLCC during thermal reflow. A cross-sectional field emission scanning electron microscope image of an actual MLCC’s crack was used to validate the accuracy of the simulation results generated in the study. Findings At 270°C, micro-voids between the copper-electrode and copper-epoxy layers absorbed 284.2 mm/mg3 of moisture, which generated 6.29 MPa of vapour pressure and caused a crack to propagate. Moisture that rapidly vaporises during reflow can cause stresses that exceed the adhesive/substrate interface’s adhesion strength of 6 MPa. Higher vapour pressure reduces crack development resistance. Thus, the maximum crack propagation between the copper-electrode and copper-epoxy layers at high reflow temperature was 0.077 mm. The numerical model was well-validated, as the maximum crack propagation discrepancy was 2.6%. Practical implications This research holds significant implications for the industry by providing valuable insights into the moisture-induced crack propagation mechanisms in soft-termination MLCCs during the reflow process. The findings can be used to optimise the design, manufacturing and assembly processes, ultimately leading to enhanced product quality, improved performance and increased reliability in various electronic applications. Moreover, while the study focused on a specific type of soft-termination MLCC in the reflow process, the methodologies and principles used in this research can be extended to other types of MLCC packages. The fundamental understanding gained from this study can be extrapolated to similar structures, enabling manufacturers to implement effective strategies for crack reduction across a wider range of MLCC applications. Originality/value The moisture-induced crack propagation in the soft-termination MLCC during thermal reflow process has not been reported to date. X-FEM numerical analysis on crack propagation have never been researched on the soft-termination MLCC.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference35 articles.

1. Effect of scale size, orientation type and dispensing method on void formation in the CUF encapsulation of BGA,2018

2. A crack propagation analysis of multilayer ceramic capacitors,2015

3. FEM simulation of cracks in MLCC during reflow soldering,2017

4. Four-point-bending experiments on multilayer ceramic capacitors: microstructural details on crack initiation and propagation,2018

5. Fracture mechanics analysis of cracks in multilayer ceramic capacitors,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3