Development of Electrolyte with Enhanced Corrosion Resistance for Sn Electroplating on Multi-Layer Ceramic Capacitors

Author:

Ku Bonil,Kim Junseong,Son Yujin,Min Kyeongseok,Baeck Sung-Hyeon

Abstract

Capacitors not only store and release electricity but selectively conduct alternating current. Among the various types of capacitors, multi-layer ceramic capacitors (MLCCs) have been widely used in automotive, smartphone, and wearable devices because of their compact size and high capacitance capabilities. In this study, we have developed an electrolyte for tin electroplating on multi-layer ceramic capacitors (MLCCs) to address the barium leaching issue at the termination points of the MLCCs. This issue has been effectively mitigated by introducing NaHSO<sub>4</sub> into the conventional tin plating electrolyte as a corrosion inhibitor. This addition facilitates a rapid reaction between the dissolved barium ions and NaHSO<sub>4</sub>, resulting in the formation of a thin passivation layer on the surface of the MLCC. The BaSO<sub>4</sub> passivation layer effectively prohibits excessive leaching of barium ions from the glass in MLCCs, thereby maintaining chip insulation resistance and preventing crack formation. However, the chemical reaction of NaHSO<sub>4</sub> and the formation of the passivation layer can lead to the generation of tin hydroxide precipitates due to pH fluctuations. To address this issue, we increase the amount of complexing agent from 100 g/L to 130 g/L. This adjustment enhanced the ability of tin ions to form stronger complexes, thereby enabling stable electrodeposition on the termination of MLCC. Consequently, the final electrolyte for Sn electroplating (denoted as LW-3) simultaneously achieves corrosion resistance and practical working efficiency, resulting in a uniform 5.4 μmthick tin plating layer with outstanding solderability, and high temperature/humidity stability.

Funder

Inha University

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3