Fretting fatigue behavior and failure characteristics of 35CrMoA steel under elliptical loading path

Author:

Huang Ziao,Liu Xiaoshan,He Guoqiu,Zhou Zhiqiang,Ge Bin,Le Peiwen,Pan Jiaqi,Xu Xiaojun

Abstract

Purpose This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path. Design/methodology/approach By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer. Findings In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content. Originality/value There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference17 articles.

1. Research on fretting fatigue properties of high strength cast aluminum alloy based on critical plane method;Lubrication Engineering,2016

2. Some considerations on the mitigation of fretting damage by the application of surface-modification technologies;Journal of Materials Processing Technology,2000

3. Effect of equivalent stress amplitude on multiaxial fretting fatigue behavior of Al–Zn–Mg alloy;Strength of Materials,2020

4. Effects of slip on fretting behavior: experiments and analyses;Wear,2004

5. Multi-axial fretting fatigue behavior;Journal of Tongji University. Natural Science,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3