Properties of instrumental variables estimation in logit-based demand models

Author:

L. Andrews Rick,Ebbes Peter

Abstract

Purpose – This paper aims to investigate the effects of using poor-quality instruments to remedy endogeneity in logit-based demand models. Endogeneity problems in demand models occur when certain factors, unobserved by the researcher, affect both demand and the values of a marketing mix variable set by managers. For example, unobserved factors such as style, prestige or reputation might result in higher prices for a product and higher demand for that product. If not addressed properly, endogeneity can bias the elasticities of the endogenous variable and subsequent optimization of the marketing mix. In practice, instrumental variables (IV) estimation techniques are often used to remedy an endogeneity problem. It is well-known that, for linear regression models, the use of IV techniques with poor-quality instruments can produce very poor parameter estimates, in some circumstances even worse than those that result from ignoring the endogeneity problem altogether. The literature has not addressed the consequences of using poor-quality instruments to remedy endogeneity problems in non-linear models, such as logit-based demand models. Design/methodology/approach – Using simulation methods, the authors investigate the effects of using poor-quality instruments to remedy endogeneity in logit-based demand models applied to finite-sample data sets. The results show that, even when the conditions for lack of parameter identification due to poor-quality instruments do not hold exactly, estimates of price elasticities can still be quite poor. That being the case, the authors investigate the relative performance of several non-linear IV estimation procedures utilizing readily available instruments in finite samples. Findings – The study highlights the attractiveness of the control function approach (Petrin and Train, 2010) and readily available instruments, which together reduce the mean squared elasticity errors substantially for experimental conditions in which the theory-backed instruments are poor in quality. The authors find important effects for sample size, in particular for the number of brands, for which it is shown that endogeneity problems are exacerbated with increases in the number of brands, especially when poor-quality instruments are used. In addition, the number of stores is found to be important for likelihood ratio testing. The results of the simulation are shown to generalize to situations under Nash pricing in oligopolistic markets, to conditions in which cross-sectional preference heterogeneity exists and to nested logit and probit-based demand specifications as well. Based on the results of the simulation, the authors suggest a procedure for managing a potential endogeneity problem in logit-based demand models. Originality/value – The literature on demand modeling has focused on deriving analytical results on the consequences of using poor-quality instruments to remedy endogeneity problems in linear models. Despite the widespread use of non-linear demand models such as logit, this study is the first to address the consequences of using poor-quality instruments in these models and to make practical recommendations on how to avoid poor outcomes.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-App Coupons Versus Group-Coupons: The Impact of Mobile Marketing Strategies on Mobile Application Adoption;Journal of Global Marketing;2024-02-20

2. Endogeneity of marketing variables in multicategory choice models;Journal of Business Economics;2023-09-25

3. Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers;Handbook of Market Research;2021-12-03

4. Endogeneity and marketing strategy research: an overview;Journal of the Academy of Marketing Science;2019-02-23

5. Addressing Endogeneity in Marketing Models;International Series in Quantitative Marketing;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3