Mechanization of static mechanical systems inspection planning process

Author:

Ratnayake R.M. Chandima

Abstract

Purpose – The purpose of this paper is to review the evolution of inspection and maintenance (I&M) practices used for aging and newly built oil and gas (O&G) facilities. It also proposes a framework and an approach for mechanizing inspection planning to perform preventive maintenance (PM) activities, taking technical condition (TC) and relative degradation (RD) into consideration. Design/methodology/approach – The paper systematically collects, categorizes, and analyzes the published literature of both researchers and practitioners. It also utilizes industrial experience that has been accrued and utilized from inspection planning practices for static mechanical equipment on aging O&G production plants. Findings – The paper defines significant issues in I&M of O&G assets related to: different philosophies; stakeholders’ requirements trade-off; dependability and asset deterioration challenges; items interacting with inspection planning mechanization processes and I&M optimization approaches. A framework is identified to mechanize the inspection planning process in order to reduce the effect arising from human involvement, while improving the effective utilization of data from different sources. The suggested approach improves the quality of an inspection program, while minimizing the variability and cost to the engineering contractors as well as to the owners of O&G facilities. Practical implications – The mechanization of inspection planning (MIP) is vital to have inspection programs with uniform quality. The currently employed inspection practices face challenges in maintaining uniform quality from one inspection program to another due to the variability present in the planning process, especially among the different inspection planning engineers. The suggested fuzzy logic-based MIP supports the minimization of the variability and increases the quality of inspection programs. Originality/value – The paper provides a comprehensive review of research contributions and industrial development efforts. These will be useful to the life cycle stakeholders in both academia and industry in understanding the inspection planning problem and solution space within the O&G asset I&M context.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference67 articles.

1. Ahmad, K. , Langdon, A. and Frieze, P.A. (1991), “An expert system for offshore structure inspection and maintenance”, Computer and Structures , Vol. 40 No. 1, pp. 143-159.

2. Aker Engineering (1990), “Probabilistic in-service inspection planning”, internal report, Rev. 1.1, Aker Engineering, Stavanger.

3. Apeland, S. and Aven, T. (2006), “Risk based maintenance optimization: foundational issues”, Reliability Engineering and System Safety , Vol. 67 No. 3, pp. 285-292.

4. API (2000), API 581: Base resource Document − Risk-Based Inspection , 1st ed., American Petroleum Institute, Washington, DC.

5. API (2008), Risk Based Inspection Technology’, Recommended Practice − 581 , 2nd ed., American Petroleum Institute, Washington, DC.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3