Author:
V. Gomathi,S. Kalaiselvi,D Thamarai Selvi
Abstract
Purpose
This work aims to develop a novel fuzzy associator rule-based fuzzified deep convolutional neural network (FDCNN) architecture for the classification of smartphone sensor-based human activity recognition. This work mainly focuses on fusing the λmax method for weight initialization, as a data normalization technique, to achieve high accuracy of classification.
Design/methodology/approach
The major contributions of this work are modeled as FDCNN architecture, which is initially fused with a fuzzy logic based data aggregator. This work significantly focuses on normalizing the University of California, Irvine data set’s statistical parameters before feeding that to convolutional neural network layers. This FDCNN model with λmax method is instrumental in ensuring the faster convergence with improved performance accuracy in sensor based human activity recognition. Impact analysis is carried out to validate the appropriateness of the results with hyper-parameter tuning on the proposed FDCNN model with λmax method.
Findings
The effectiveness of the proposed FDCNN model with λmax method was outperformed than state-of-the-art models and attained with overall accuracy of 97.89% with overall F1 score as 0.9795.
Practical implications
The proposed fuzzy associate rule layer (FAL) layer is responsible for feature association based on fuzzy rules and regulates the uncertainty in the sensor data because of signal inferences and noises. Also, the normalized data is subjectively grouped based on the FAL kernel structure weights assigned with the λmax method.
Social implications
Contributed a novel FDCNN architecture that can support those who are keen in advancing human activity recognition (HAR) recognition.
Originality/value
A novel FDCNN architecture is implemented with appropriate FAL kernel structures.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering
Reference81 articles.
1. A public domain dataset for human activity recognition using smartphones,2013
2. Energy efficient smartphone-based activity recognition using fixed-point arithmetic;Journal of Universal Computer Science-Special Issue in Ambient Assisted Living: Home Care,2013
3. A comparison of machine learning and deep learning techniques for activity recognition using mobile devices;Sensors,2019
4. Fuzzy eigenvalues and input–output analysis;Fuzzy Sets and Systems,1990
5. Human activity recognition using binary sensors, BLE beacons, an intelligent floor and acceleration data: a machine learning approach;Proceedings,2018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献