Path planning for intelligent robot based on switching local evolutionary PSO algorithm

Author:

Zeng Nianyin,Zhang Hong,Chen Yanping,Chen Binqiang,Liu Yurong

Abstract

Purpose This paper aims to present a novel particle swarm optimization (PSO) based on a non-homogeneous Markov chain and differential evolution (DE) for path planning of intelligent robot when having obstacles in the environment. Design/methodology/approach The three-dimensional path surface of the intelligent robot is decomposed into a two-dimensional plane and the height information in z axis. Then, the grid method is exploited for the environment modeling problem. After that, a recently proposed switching local evolutionary PSO (SLEPSO) based on non-homogeneous Markov chain and DE is analyzed for the path planning problem. The velocity updating equation of the presented SLEPSO algorithm jumps from one mode to another based on the non-homogeneous Markov chain, which can overcome the contradiction between local and global search. In addition, DE mutation and crossover operations can enhance the capability of finding a better global best particle in the PSO method. Findings Finally, the SLEPSO algorithm is successfully applied to the path planning in two different environments. Comparing with some well-known PSO algorithms, the experiment results show the feasibility and effectiveness of the presented method. Originality/value Therefore, this can provide a new method for the area of path planning of intelligent robot.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference29 articles.

1. An improved local best searching in particle swarm optimization using differential evolution,2011

2. Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization,2015

3. Population set based global optimization algorithms: some modifications and numerical studies;Computers & Operations Research,2004

4. Ant colony optimization: introduction and recent trends;Physics of Life Reviews,2005

5. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems;IEEE Transactions on Evolutionary Computation,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3