Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles

Author:

Menni Younes,Chamkha Ali J.,Massarotti Nicola,Ameur Houari,Kaid Noureddine,Bensafi Mohammed

Abstract

Purpose The purpose of this paper is to carry out a hydrodynamic and thermal analysis of turbulent forced-convection flows of pure water, pure ethylene glycol and water-ethylene glycol mixture, as base fluids dispersed by Al2O3 nano-sized solid particles, through a constant temperature-surfaced rectangular cross-section channel with detached and attached obstacles, using a computational fluid dynamics (CFD) technique. Effects of various base fluids and different Al2O3 nano-sized solid particle solid volume fractions with Reynolds numbers ranging from 5,000 to 50,000 were analyzed. The contour plots of dynamic pressure, stream-function, velocity-magnitude, axial velocity, transverse velocity, turbulent intensity, turbulent kinetic energy, turbulent viscosity and temperature fields, the axial velocity profiles, the local and average Nusselt numbers, as well as the local and average coefficients of skin friction, were obtained and investigated numerically. Design/methodology/approach The fluid flow and temperature fields were simulated using the Commercial CFD Software FLUENT. The same package included a preprocessor GAMBIT which was used to create the mesh needed for the solver. The RANS equations, along with the standard k-epsilon turbulence model and the energy equation were used to control the channel flow model. All the equations were discretized by the finite volume method using a two-dimensional formulation, using the semi-implicit method for pressure-linked equations pressure-velocity coupling algorithm. With regard to the flow characteristics, the interpolation QUICK scheme was applied, and a second-order upwind scheme was used for the pressure terms. The under-relaxation was changed between the values 0.3 and 1.0 to control the update of the computed variables at each iteration. Moreover, various grid systems were tested to analyze the effect of the grid size on the numerical solution. Then, the solutions are said to be converging when the normalized residuals are smaller than 10-12 and 10-9 for the energy equation and the other variables, respectively. The equations were iterated by the solver till it reached the needed residuals or when it stabilized at a fixed value. Findings The result analysis showed that the pure ethylene glycol with Al2O3 nanoparticles showed a significant heat transfer enhancement, in terms of local and average Nusselt numbers, compared with other pure or mixed fluid-based nanofluids, with low-pressure losses in terms of local and average skin friction coefficients. Originality/value The present research ended up at interesting results which constitute a valuable contribution to the improvement of the knowledge basis of professional work through research related to turbulent flow forced-convection within channels supplied with obstacles, and especially inside heat exchangers and solar flat plate collectors.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3