Flight path optimization with application to in-flight replanning to changing destinations

Author:

Babel Luitpold

Abstract

Purpose The purpose of this paper is to present a new approach for finding a minimum-length trajectory for an autonomous unmanned air vehicle or a long-range missile from a release point with specified release conditions to a destination with specified approach conditions. The trajectory has to avoid obstacles and no-fly zones and must take into account the kinematic constraints of the air vehicle. Design/methodology/approach A discrete routing model is proposed that represents the airspace by a sophisticated network. The problem is then solved by applying standard shortest-path algorithms. Findings In contrast to the most widely used grids, the generated networks allow arbitrary flight directions and turn angles, as well as maneuvers of different strengths, thus fully exploiting the flight capabilities of the aircraft. Moreover, the networks are resolution-independent and provide high flexibility by the option to adapt density. Practical implications As an application, a concept for in-flight replanning of flight paths to changing destinations is proposed. All computationally intensive tasks are performed in a pre-flight planning prior to the launch of the mission. The in-flight planning is based entirely on precalculated data, which are stored in the onboard computer of the air vehicle. In particular, no path finding algorithms with high or unpredictable running time and uncertain outcome have to be applied during flight. Originality/value The paper presents a new network-based algorithm for flight path optimization that overcomes weaknesses of grid-based approaches and allows high-quality solutions. The method can be applied for quick in-flight replanning of flight paths.

Publisher

Emerald

Subject

Aerospace Engineering

Reference47 articles.

1. Three-dimensional route planning for unmanned aerial vehicles in a risk environment;Journal of Intelligent & Robotic Systems,2012

2. Receding horizon control of autonomous aerial vehicles,2002

3. On a routing problem;Quarterly of Applied Mathematics,1958

4. Robust UAV search for environments with imprecise probability maps,2005

5. Shortest paths of bounded curvature in the plane;Journal of Intelligent & Robotic Systems,1994

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved tentacle-based method based on approximate analysis for entry flight;2023 35th Chinese Control and Decision Conference (CCDC);2023-05-20

2. Survey on Mission Planning of Multiple Unmanned Aerial Vehicles;Aerospace;2023-02-23

3. Flight Path Planning of Aircraft Under Multiple Constraints Based on Genetic Algorithm;Lecture Notes on Data Engineering and Communications Technologies;2023

4. Comparison Between A* and RRT Algorithms for 3D UAV Path Planning;Unmanned Systems;2021-10-08

5. Coordinated Target Assignment and UAV Path Planning with Timing Constraints;Journal of Intelligent & Robotic Systems;2018-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3