Comparison Between A* and RRT Algorithms for 3D UAV Path Planning

Author:

Zammit Christian1,van Kampen Erik-Jan1

Affiliation:

1. Control & Simulation, Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands

Abstract

This paper aims to present a comparative analysis of the two most utilized graph-based and sampling-based algorithms and their variants, in view of 3D UAV path planning in complex indoor environment. The findings of this analysis outline the usability of the methods and can assist future UAV path planning designers to select the best algorithm with the best parameter configuration in relation to the specific application. An extensive literature review of graph-based and sampling-based methods and their variants is first presented. The most utilized algorithms which are the A* for graph-based methods and Rapidly-Exploring Random Tree (RRT) for the sampling-based methods, are defined. A set of variants is also developed to mitigate with inherent shortcomings in the standard algorithms. All algorithms are then tested in the same scenarios and analyzed using the same performance measures. The A* algorithm generates shorter paths with respect to the RRT algorithm. The A* algorithm only explores volumes required for path generation while the RRT algorithms explore the space evenly. The A* algorithm exhibits an oscillatory behavior at different resolutions for the same scenario that is attenuated with the novel A* ripple reduction algorithm. The Multiple RRT generated longer unsmoothed paths in shorter planning times but required more smoothing over RRT. This work is the first attempt to compare graph-based and sampling-based algorithms in 3D path planning of UAVs. Furthermore, this work addresses shortcomings in both A* and RRT standard algorithms by developing a novel A* ripple reduction algorithm, a novel RRT variant and a specifically designed smoothing algorithm.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3